Алгоритм

Содержание
  1. Алгоритм: понятие, свойства, структура и виды
  2. История появления алгоритмов
  3. Взаимодействие алгоритма с человеком и машиной
  4. Что такое алгоритм?
  5. Основные свойства алгоритма
  6. Цикличный алгоритм
  7. Линейные типы алгоритмов
  8. Разветвляющийся алгоритм
  9. Вспомогательный алгоритм
  10. Термины, встречающиеся в алгоритмах
  11. Структура алгоритма
  12. Графический вариант построения алгоритма
  13. Геометрические фигуры, отвечающие за разные действия в алгоритме
  14. Понятие алгоритма в информатике
  15. Вывод
  16. Разрабатываем алгоритм действий. Создаем блок схемы
  17. Как создаются алгоритмы действий?
  18. Опишите последовательность действий — это запоминается
  19. Алгоритм действий в графике — это блок-схема
  20. Блок-схемы применяются в продажах
  21. Сервисы для разработки блок-схем
  22. Создавайте игровые блок-схемы для своих детей
  23. Алгоритм
  24. Формальные свойства алгоритмов
  25. Виды алгоритмов
  26. Представление алгоритмов
  27. Пример
  28. Что такое алгоритм — xBB.uz
  29. История
  30. Что это такое
  31. Блок-схемы
  32. Псевдокод
  33. Заключение
  34. «VBA Разработка алгоритма. Блок-схема. Структуры алгоритмов»
  35. 2.2 Блок-схема
  36. 2.3 Структуры алгоритмов

Алгоритм: понятие, свойства, структура и виды

Алгоритм

Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и строений, созданных природой, и воплотить в жизнь идеи, придуманные человеком.

В этой статье мы разберем основные понятия алгоритма.

История появления алгоритмов

Алгоритм – понятие, появившиеся в XII веке. Само слово “алгоритм” происходит от латинской интерпретации имени известного математика среднего востока Мухаммеда аль Хорезми, который написал книгу “Об индийском счете”. В этой книге описано, как правильно записывать натуральные числа, используя арабские цифры, и приведено описание алгоритма действий столбиком над такими числами.

В XII веке книга “Об индийском счете” была переведена на латинский язык, тогда-то и появилось данное определение.

Взаимодействие алгоритма с человеком и машиной

Создание алгоритма требует творческого подхода, поэтому новый список последовательных действий может создать только живое существо. А вот для исполнения уже существующих инструкций фантазию иметь не обязательно, с этим справится даже бездушная техника.

Отличным примером точного исполнения заданной инструкции является пустая микроволновая печь, которая продолжает работать, несмотря на отсутствие пищи внутри нее.

Субъект или объект, которому не обязательно вникать в суть алгоритма, называется формальным исполнителем. Человек тоже может стать формальным исполнителем, однако в случае нерентабельности того или иного действия мыслящий исполнитель может все сделать по-своему.

Поэтому основными исполнителями являются компьютеры, микроволновые печи, телефоны и другая техника. Понятие алгоритма в информатике имеет самое важное значение. Каждый алгоритм составляется с расчетом на конкретного субъекта, с учетом допустимых действий.

Те объекты к которым субъект может применить инструкции, составляют среду исполнителя.

Практически все в нашем мире подчиняется каким-то законам и правилам. Современная наука не стоит на месте, благодаря чему человечеству известна масса формул и алгоритмов, следуя которым, можно рассчитать и воссоздать множество действий и творений природы и воплотить в жизнь идеи, придуманные человеком. В этой статье мы разберем основные понятия алгоритма.

Что такое алгоритм?

Большинство действий, которые мы выполняем в течение своей жизни, требуют соблюдений ряда правил.

От того, насколько верное представление имеет человек о том что, как и в какой последовательности он должен сделать, зависит качество и результат выполнения поставленных перед ним задач.

С детства родители пытаются выработать в своем чаде алгоритм основных действий, например: проснуться, заправить постель, умыться и почистить зубы, сделать зарядку, позавтракать и т. д., список, который человек всю жизнь выполняет с утра тоже можно считать своеобразным алгоритмом.

Алгоритм – это понятие, обозначающее подборку инструкций, которые необходимо выполнять человеку для того, чтобы решить определенную задачу.

Вообще, алгоритм имеет множество определений, несколько ученых характеризуют его по-разному.

Если алгоритм, применяемый человеком ежедневно, у каждого свой, и может изменятся в зависимости от возраста и ситуаций, в которых оказывается исполнитель, то свод действий, которые нужно выполнить для решения математической задачи или для использования техники, един для всех и всегда остается неизменным.

Существует разное понятие алгоритма, виды алгоритмов тоже разнятся – к примеру, для человека, который преследует какую-либо цель, и для техники.

В наш век информационных технологий люди ежедневно выполняют свод инструкций, созданных до них другими людьми, ведь техника требует при использовании точного исполнения ряда действий.

Поэтому основная задача преподавателей в школах – научить детей пользоваться алгоритмами, быстро схватывать и изменять уже существующие правила в соответствии со сложившейся ситуацией.

Структура алгоритма является одним из тех понятий, которое изучается на уроке математики и информатики в каждой школе.

Основные свойства алгоритма

1. Дискретность (последовательность отдельных действий) – любой алгоритм должен представляться в виде ряда простых действий, каждое из которых должно начинаться после завершения предыдущего.

2. Определенность – каждое действие алгоритма должно быть настолько простым и понятным, чтобы у исполнителя не возникало вопросов и не оставалось свободы действий.

3. Результативность – описание алгоритма должно быть понятным и законченным, чтобы после выполнения всех инструкций задача достигала логичного конца.

4. Массовость – алгоритм должен быть применим к целому классу задач, решить которые можно, лишь поменяв в алгоритме цифры. Хотя есть мнение, что последний пункт относится не к алгоритмам, а ко всем математическим методам в целом.

Часто в школах, чтобы дать детям более понятное описание алгоритмов, учителя приводят в пример приготовление пищи по кулинарной книге, изготовление лекарства по рецепту или процесс мыловарения на основе мастер-класса.

Однако, учитывая второе свойство алгоритма, в котором говорится о том, что каждый пункт алгоритма должен быть настолько понятным, чтобы его мог выполнить абсолютно любой человек и даже машина, можно прийти к выводу что любой процесс, требующий проявления хоть какой-то фантазии, алгоритмом назвать нельзя.

А готовка и рукоделие требуют определенных навыков и хорошо развитого воображения.

Существуют разные типы алгоритмов, но есть три основных.

Цикличный алгоритм

В таком типе некоторые пункты повторяются по несколько раз. Список действий, которые необходимо повторить для достижения цели, называется телом алгоритма.

Итерация цикла — это выполнение всех пунктов, входящих в тело цикла.
Части цикла, которые постоянно выполняются определенное количество раз, называются циклом с фиксированным числом итераций.

Те части цикла, частота повторения которых зависит от ряда условий, называются неопределёнными.

Самый простой вид цикла — это фиксированный.

Существует два вида цикличных алгоритмов:

  • Цикл с предусловием. В этом случае тело цикла проверяет свое условие до того, как он будет выполнен.
  • Цикл с постусловием. В цикле с постусловием проверка условия происходит после окончания выполнения цикла.

Линейные типы алгоритмов

Инструкции таких схем выполняются однократно в той последовательности, в которой они представлены. Например, линейным алгоритмом можно считать процесс заправки постели или чистки зубов. Также к этому типу относятся математические примеры, где присутствуют лишь действия сложения и вычитания.

Разветвляющийся алгоритм

В разветвляющимся типе есть несколько вариантов действий, какое из них будет применено, зависит от условия.

Пример. Вопрос: “Идет дождь?” Варианты ответов: “Да” или “Нет”. Если “да” — откройте зонт, если “нет” — положите зонт в сумку.

Вспомогательный алгоритм

Вспомогательный алгоритм можно использовать в других алгоритмах, указав лишь его название.

Термины, встречающиеся в алгоритмах

Условие находится между словами “если” и “тогда”.

Например: если вы знаете английский язык, тогда нажмите один. В этом предложении условием будет часть фразы «вы знаете английский язык».

Данные — сведения, которые несут определенную смысловую нагрузку и представлены в таком виде, чтобы их можно было передавать и использовать для данного алгоритма.

Алгоритмический процесс — решение задачи по алгоритму с применением определенных данных.

Структура алгоритма

Алгоритм может иметь различную структуру. Для того чтобы описать алгоритм, понятие которого зависит и от его строения, можно воспользоваться целым рядом различных способов, например: словесный, графический, с помощью специально разработанного алгоритмического языка.

Какой из способов будет использован, зависит от нескольких факторов: от сложности задачи, от того, насколько нужно детализировать процесс решения задачи и т. д.

Графический вариант построения алгоритма

Графический алгоритм — понятие, подразумевающие под собой разложение действий, которые нужно выполнить для решения определенной задачи, по определенным геометрическим фигурам.

Графические схемы изображаются не как попало. Для того чтобы их мог понять любой человек применяются чаще всего блок-схемы и структурограммы Насси-Шнейдермана.

Также блок-схемы изображаются в соответствии с ГОСТ-19701-90 и ГОСТ-19.003-80.
Графические фигуры, применяемые в алгоритме, делятся на:

  • Основные. Основные изображения применяются для обозначения операций, нужных для обработки данных при решении задачи.
  • Вспомогательные. Вспомогательные изображения нужны для обозначения отдельных, не самых важных, элементов решения задачи.

В графическом алгоритме геометрические фигуры, используемые для обозначения данных, называются блоками.

Все блоки идут в последовательности “сверху вниз” и “слева направо” — это правильное направление потока. При правильной последовательности линии, соединяющие между собой блоки, не показывают направление. В остальных случаях направление линий обозначается с помощью стрелок.

У правильной схемы алгоритма не должно быть больше одного выхода из обрабатывающих блоков и менее двух выходов из блоков, отвечающих за логические операции и проверку выполнения условий.

Как правильно построить алгоритм?

Структура алгоритма, как было сказано выше, должна строиться по ГОСТ, иначе она не будет понятна и доступна окружающим.

Общая методика по записи включает в себя следующие пункты:

Название, по которому будет понятно, какую задачу можно решить с помощью этой схемы.

У каждого алгоритма должны быть четко обозначены начало и конец.

У алгоритмов должны быть четко и ясно описаны все данные, как входные, так и выходные.

При составлении алгоритма следует отметить действия, которые позволят производить нужные для решения задачи действия над выбранными данными. Примерный вид алгоритма:

  • Имя схемы.
  • Данные.
  • Начало.
  • Команды.
  • Конец.

Правильное построение схемы существенно облегчит вычисление алгоритмов.

Геометрические фигуры, отвечающие за разные действия в алгоритме

Горизонтально расположенный овал – начало и конец (знак завершения).

Горизонтально расположенный прямоугольник — вычисление или другие действия (знак процесса).

Горизонтально расположенный параллелограмм — ввод или вывод (знак данных).

Горизонтально расположенный ромб — проверка условия (знак решения).

Вытянутый, горизонтально расположенный шестиугольник — модификация (знак подготовки).

Модели алгоритмов представлены ниже на рисунке.

Формульно-словестный вариант построения алгоритма.

Формульно-словестные алгоритмы записываются в произвольной форме, на профессиональном языке той области, к которой относится задача. Описание действий таким способом осуществляют с помощью слов и формул.

Понятие алгоритма в информатике

В компьютерной сфере все строится на алгоритмах. Без четких указаний, введенных в виде специального кода, не будет работать ни одна техника или программа. На уроках информатики ученикам стараются дать основные понятия алгоритмов, научить пользоваться ими и самостоятельно их создавать.

Создание и использование алгоритмов в информатике – процесс более творческий, чем, например, выполнение указаний к решению задачи в математике.

Существует также специальная программа «Алгоритм», которая помогает людям, несведущим в области программирования, создавать свои собственные программы. Такой ресурс сможет стать незаменимым помощником для тех, кто делает первые шаги в информатике и хочет создавать свои игры или любые другие программы.

С другой стороны, любая программа — алгоритм. Но если алгоритм несет в себе лишь действия, которые нужно выполнять, вставляя свои данные, то программа уже несет в себе готовые данные. Еще одно отличие — это то, что программа может быть запатентована и являться частной собственностью, а алгоритм нет. Алгоритм — понятие более обширное, нежели программа.

Вывод

В этой статье мы разобрали понятие алгоритма и его виды, узнали, как правильно записывать графические схемы.

Источник: http://fb.ru/article/197220/algoritm-ponyatie-svoystva-struktura-i-vidyi

Разрабатываем алгоритм действий. Создаем блок схемы

Разрабатываем алгоритм действий. Создаем блок схемы

В жизни нам часто приходится встречаться с различными ситуациями, в которых мы совершаем одни и те же определенные действия.

Для того, чтобы вовремя проснуться, нам нужно не забыть включить будильник. Для того, чтобы утолить свой голод, нам необходимо выполнить одни и те же действия по приготовлению вкусной пищи.

Для того, чтобы выполнить знакомую нам работу, мы тоже часто делаем одно и то же.

Такое поведение можно называть по-разному, смотря в каком контексте оно рассматривается. Если рассмотреть с позиции эффективности деятельности, то эти действия можно назвать привычками или навыками.

Если рассматривать с точки зрения отображения процесса, то описание последовательности действий, строгое исполнение которых приводит к решению поставленных задач за определенное количество шагов, называют алгоритмом действий.

Как создаются алгоритмы действий?

Мы постоянно сталкиваемся с этим в обычной жизни. Какие действия мы совершаем, чтобы пополнить счет своего мобильного телефона? Каждый из нас — разные. Так как способов пополнения счета несколько, следовательно мы все по-разному это делаем. Результат, правда всегда один получается — появление средств на телефоне.

Или еще пример: чтобы скопировать картинку или текст, нажимаем правой кнопкой мыши на картинку, затем выбираем «Копировать», помещаем  в нужное место, нажимаем правой кнопкой » Вставить», и результат достигнут.

Все это — определенная последовательность действий, в результате которых различными средствами решается поставленная задача. Но пока это только наши знания, которые перерастают в навыки и умения, а если этот процесс описать, то мы сможем наглядно увидеть алгоритм наших действий, и передать его другим людям. На словах не все и не всегда понятно бывает.

Опишите последовательность действий — это запоминается

Создать алгоритм действий можно, описав или изобразив его последовательность. Знают ли все, что надо сделать, чтобы посадить дерево? Возможно, основные шаги понятны всем, но вот когда деревце поливать, перед посадкой или после, помнит не каждый. Созданный алгоритм позволит все действия выполнить в правильной последовательности.

Чтобы описать последовательность действий посложнее, придется постараться и подробно их все записать. Пример можно взять с всевозможных правил и инструкций — там очень четко прописываются по шагам действия, которые нам надо сделать.

Но бывают ситуации, в которых за определенным действие следует не один шаг, а несколько, в зависимости от предыдущего результата.

В таком случае, предположительные действия тоже записывают, чтобы человек мог легко сориентироваться в разных ситуациях, и знал, что нужно предпринять.

Алгоритм действий в графике — это блок-схема

Если изобразить алгоритмы действий в графическом варианте, с помощью геометрических фигур с линиями-связями, показывающими порядок выполнения действия, то мы получим блок-схему. Блок-схема намного превосходит правила, инструкции, и записанные по порядку алгоритмы действий, по своей наглядности и читаемости.

Представьте, что вам нужно чему-то научить другого человека. Вы отлично знаете все действия в определенной последовательности.

Ваша задача — показать, как это нужно делать и передать свои знания так, чтобы другой человек их запомнил и знал так же, как и вы. Устная передача знаний допускает импровизации и некоторый произвол.

Самым лучшим способом будет блок-схема, в которой объясняется последовательность и возможные варианты действий. В качестве примера — веселое руководство по изучению блог-схем:

Лучшим условием для получения результата будет повторяемость действий. Это однозначно влияет на скорость достижения результата в будущем. Чем чаще вам придется повторять одни и те же действия, тем быстрее вы научитесь выполнять последовательность действий, а значит в каждый последующий раз, вам потребуется меньше времени на выполнение.

Блок-схемы применяются в продажах

В продажах такое обучение с помощью разработки алгоритмов и изображения их в виде блок-схем имеет большое распространение. Чаще всего их используют в телефонных сценариях разговоров в call-центрах и для «холодных» звонков.

Корпоративная культура набирает обороты, поэтому многие компании уже не позволяют сотрудникам нести «отсебятину», даже талантливую, а предлагают действовать им по заранее разработанному сценарию, представляя «лицо фирмы» на различных этапах. Эффект появляется буквально после нескольких дней действий «по бумажке».

Со временем, многое из описанных алгоритмов запоминается сотрудником, и в дальнейшем  он свободно может общаться, не опасаясь того, в какую сторону может уйти разговор.

Алгоритмы действий и блог-схемы разрабатываются не только в продажах. Большое распространение они имеют в обучении и практике врачей, программистов, «компьютерщиков», у многих технических специальностей.

Стоит попробовать научиться действовать по подобным блок-схемам. Ведь впервые встречаясь с непонятным поначалу обилием действий и задач, думаешь о том, как тебе не хватает разработанной блок-схемы.

После долгих мучений не выдерживаешь, и начинаешь разрабатывать и создавать самостоятельно. Эффективные люди не любят простоев в делах.

А блок-схемы значительно упрощают жизнь и позволяют разобраться в решении сложных задач.

Сервисы для разработки блок-схем

В интернете есть сервисы, которые могут помочь вам создавать такие блок-схемы. Один из них — Сacoo. С его помощью вам легко удастся превращать ваши алгоритмы в различные диаграммы, блок-схемы и графики. Вы увидите, что это очень приятное и радостное занятие — преобразовывать то, что вам известно, в науку для других людей.

На этом онлайн-сервисе — хорошее настроение вам обеспечено. На первоначальном этапе можно воспользоваться возможностями бесплатной учетной записи, а в будущем за доступ нужно будет платить. Естественно, что бесплатный доступ имеет ограничения по сравнению с платными. Но для изучения и первых шагов, функционала вполне достаточно.

Разработав алгоритмы действий и преобразовав их в блок-схемы с помощью Cacoo, вы сможете надолго создать хорошее настроение не только себе, но и другим людям, постигающим азы.

Создавайте игровые блок-схемы для своих детей

Подводя итог вышесказанному отмечу, что теперь вы сможете использовать алгоритмы действий и блок-схемы в различных жизненных ситуациях. Даже ваши дети с огромным удовольствием станут выполнять не самые интересные обязанности, следуя понятным подсказкам. Если будут идеи, где и как можно применять алгоритм действий

Источник: https://kopilkasovetov.com/programmyi-servisi-prilogeniya/razrabatyivaem-algoritmyi-deystviy-i-sozdaem-blok-shemyi

Алгоритм

Алгоритм

Материал из Википедии — свободной энциклопедии

Алгори́тм — набор инструкций, описывающих порядок действий исполнителя для достижения результата решения задачи за конечное число действий.

В старой трактовке вместо слова «порядок» использовалось слово «последовательность», но по мере развития параллельности в работе компьютеров слово «последовательность» стали заменять более общим словом «порядок».

Это связано с тем, что работа каких-то инструкций алгоритма может быть зависима от других инструкций или результатов их работы. Таким образом, некоторые инструкции должны выполняться строго после завершения работы инструкций, от которых они зависят.

Независимые инструкции или инструкции, ставшие независимыми из-за завершения работы инструкций, от которых они зависят, могут выполняться в произвольном порядке, параллельно или одновременно, если это позволяют используемые процессор и операционная система.

Часто в качестве исполнителя выступает некоторый механизм (компьютер, токарный станок, швейная машина), но понятие алгоритма необязательно относится к компьютерным программам, так, например, чётко описанный рецепт приготовления блюда также является алгоритмом, в таком случае исполнителем является человек.

Понятие алгоритма относится к первоначальным, основным, базисным понятиям математики. Вычислительные процессы алгоритмического характера (арифметические действия над целыми числами, нахождение наибольшего общего делителя двух чисел и т. д.) известны человечеству с глубокой древности. Однако, в явном виде понятие алгоритма сформировалось лишь в начале XX века.

Современное формальное определение алгоритма было дано в 30—50-е годы XX века в работах Тьюринга, Поста, Чёрча (тезис Чёрча — Тьюринга), Н. Винера, А. А. Маркова.

Само слово «алгоритм» происходит от имени хорезмского учёного Абу Абдуллах Мухаммеда ибн Муса аль-Хорезми (алгоритм — аль-Хорезми). Около 825 года он написал сочинение, в котором впервые дал описание придуманной в Индии позиционной десятичной системы счисления. К сожалению, персидский оригинал книги не сохранился.

Аль-Хорезми сформулировал правила вычислений в новой системе и, вероятно, впервые использовал цифру 0 для обозначения пропущенной позиции в записи числа (её индийское название арабы перевели как as-sifr или просто sifr, отсюда такие слова, как «цифра» и «шифр»). Приблизительно в это же время индийские цифры начали применять и другие арабские учёные.

В первой половине XII века книга аль-Хорезми в латинском переводе проникла в Европу. Переводчик, имя которого до нас не дошло, дал ей название Algoritmi de numero Indorum («Алгоритмы о счёте индийском»). По-арабски же книга именовалась Китаб аль-джебр валь-мукабала («Книга о сложении и вычитании»).

Из оригинального названия книги происходит слово Алгебра (алгебра — аль-джебр — восполнение).

Таким образом, мы видим, что латинизированное имя среднеазиатского учёного было вынесено в заглавие книги, и сегодня считается, что слово «алгоритм» попало в европейские языки именно благодаря этому сочинению. Однако вопрос о его смысле длительное время вызывал ожесточённые споры. На протяжении многих веков происхождению слова давались самые разные объяснения.

Одни выводили algorism из греческих algiros (больной) и arithmos (число). Из такого объяснения не очень ясно, почему числа именно «больные».

Или же лингвистам больными казались люди, имеющие несчастье заниматься вычислениями? Своё объяснение предлагал и энциклопедический словарь Брокгауза и Ефрона.

В нём алгорифм (кстати, до революции использовалось написание алгориѳм, через фиту) производится «от арабского слова Аль-Горетм, то есть корень». Разумеется, эти объяснения вряд ли можно счесть убедительными.

Упомянутый выше перевод сочинения аль-Хорезми стал первой ласточкой, и в течение нескольких следующих столетий появилось множество других трудов, посвящённых всё тому же вопросу — обучению искусству счёта с помощью цифр. И все они в названии имели слово algoritmi или algorismi.

Около 1250 года английский астроном и математик Иоанн Сакробоско написал труд по арифметике Algorismus vulgaris, на столетия ставший основным учебником по вычислениям в десятичной позиционной системе счисления во многих европейских университетах. Во введении Сакробоско назвал автором науки о счёте мудреца по имени Алгус (Algus).

Алгоритм — это искусство счёта с помощью цифр, но поначалу слово «цифра» относилось только к нулю.

Знаменитый французский трувер Готье де Куанси (Gautier de Coincy, 1177—1236) в одном из стихотворений использовал словаalgorismus-cipher (которые означали цифру 0) как метафору для характеристики абсолютно никчёмного человека.

Очевидно, понимание такого образа требовало соответствующей подготовки слушателей, а это означает, что новая система счисления уже была

Аба́к (др.-греч. ἄβαξ, ἀβάκιον, лат. abacus — доска) — счётная доска, применявшаяся для арифметических вычислений приблизительно с V века до н. э. в Древней Греции, Древнем Риме.им достаточно хорошо известна.

Многие века абак был фактически единственным средством для практичных вычислений, им пользовались и купцы, и менялы, и учёные. Достоинства вычислений на счётной доске разъяснял в своих сочинениях такой выдающийся мыслитель, как Герберт Аврилакский (938—1003), ставший в 999 г. папой римским под именем Сильвестра II.

Новое с огромным трудом пробивало себе дорогу, и в историю математики вошло упорное противостояние лагерей алгорисмиков и абацистов (иногда называемых гербекистами), которые пропагандировали использование для вычислений абака вместо арабских цифр.

Интересно, что известный французский математик Николя Шюке (Nicolas Chuquet, 1445—1488) в реестр налогоплательщиков города Лиона был вписан как алгорисмик (algoriste).

Но прошло не одно столетие, прежде чем новый способ счёта окончательно утвердился, столько времени потребовалось, чтобы выработать общепризнанные обозначения, усовершенствовать и приспособить к записи на бумаге методы вычислений. В Западной Европе учителей арифметики вплоть до XVII века продолжали называть «магистрами абака».

Историки датируют 1691 годом один из списков древнерусского учебника арифметики, известного как «Счётная мудрость». Это сочинение известно во многих вариантах (самые ранние из них почти на сто лет старше) и восходит к ещё более древним рукописям XVI в.

По ним можно проследить, как знание арабских цифр и правил действий с ними постепенно распространялось на Руси.

Полное название этого учебника — «Сия книга, глаголемая по еллински и по гречески арифметика, а по немецки алгоризма, а по русски цифирная счётная мудрость».

Таким образом, слово «алгоритм» понималось первыми русскими математиками так же, как и в Западной Европе. Однако его не было ни в знаменитом словаре В. И. Даля, ни спустя сто лет в «Толковом словаре русского языка» под редакцией Д. Н. Ушакова (1935 г.).

Зато слово «алгорифм» можно найти и в популярном дореволюционном Энциклопедическом словаре братьев Гранат, и в первом издании Большой советской энциклопедии (БСЭ), изданном в 1926 г.

И там, и там оно трактуется одинаково: как правило, по которому выполняется то или иное из четырёх арифметических действий в десятичной системе счисления. Однако к началу XX в.

для математиков слово «алгоритм» уже означало любой арифметический или алгебраический процесс, выполняемый по строго определённым правилам, и это объяснение также даётся в следующих изданиях БСЭ.

Формальные свойства алгоритмов

Различные определения алгоритма в явной или неявной форме содержат следующий ряд общих требований:

  • Дискретность — алгоритм должен представлять процесс решения задачи как последовательное выполнение некоторых простых шагов. При этом для выполнения каждого шага алгоритма требуется конечный отрезок времени, то есть преобразование исходных данных в результат осуществляется во времени дискретно.
  • Детерминированность (определённость). В каждый момент времени следующий шаг работы однозначно определяется состоянием системы. Таким образом, алгоритм выдаёт один и тот же результат (ответ) для одних и тех же исходных данных. В современной трактовке у разных реализаций одного и того же алгоритма должен быть изоморфный граф. С другой стороны, существуют вероятностные алгоритмы, в которых следующий шаг работы зависит от текущего состояния системы и генерируемого случайного числа. Однако при включении метода генерации случайных чисел в список «исходных данных», вероятностный алгоритм становится подвидом обычного.
  • Понятность — алгоритм должен включать только те команды, которые доступны исполнителю и входят в его систему команд.
  • Завершаемость (конечность) — при корректно заданных исходных данных алгоритм должен завершать работу и выдавать результат за конечное число шагов. С другой стороны, вероятностный алгоритм может и никогда не выдать результат, но вероятность этого равна 0.
  • Массовость (универсальность). Алгоритм должен быть применим к разным наборам исходных данных.
  • Результативность — завершение алгоритма определёнными результатами.
  • Алгоритм содержит ошибки, если приводит к получению неправильных результатов либо не даёт результатов вовсе.
  • Алгоритм не содержит ошибок, если он даёт правильные результаты для любых допустимых исходных данных.

Виды алгоритмов

Особую роль выполняют прикладные алгоритмы, предназначенные для решения определённых прикладных задач. Алгоритм считается правильным, если он отвечает требованиям задачи (например, даёт физически правдоподобный результат).

Алгоритм (программа) содержит ошибки, если для некоторых исходных данных он даёт неправильные результаты, сбои, отказы или не даёт никаких результатов вообще.

Последний тезис используется в олимпиадах по алгоритмическому программированию, чтобы оценить составленные участниками программы.

Виды алгоритмов как логико-математических средств отражают указанные компоненты человеческой деятельности и тенденции, а сами алгоритмы в зависимости от цели, начальных условий задачи, путей ее решения, определения действий исполнителя подразделяются следующим образом:

• Механические алгоритмы, или иначе детерминированныежесткие (например, алгоритм работы машины, двигателя и т. п.

) – задают определенные действия, обозначая их в единственной и достоверной последовательности, обеспечивая тем самым однозначный требуемый или искомый результат, если выполняются те условия процесса, задачи, для которых разработан алгоритм.

• Гибкие алгоритмы, например стохастические, то есть вероятностные и эвристические.

• Вероятностный (стохастический) алгоритм дает программу решения задачи несколькими путями или способами, приводящими к вероятному достижению результата.

• Эвристический алгоритм (от греческого слова «эврика») — алгоритм, использующий различные разумные соображения без строгих обоснований[11].

• Линейный алгоритм — набор команд (указаний), выполняемых последовательно во времени друг за другом.

• Разветвляющийся алгоритм — алгоритм, содержащий хотя бы одно условие, в результате проверки которого может осуществляться разделение на несколько параллельных ветвей алгоритма.

• Циклический алгоритм — алгоритм, предусматривающий многократное повторение одного и того же действия (одних и тех же операций) над новыми исходными данными.

К циклическим алгоритмам сводится большинство методов вычислений, перебора вариантов.

Цикл программы — последовательность команд (серия, тело цикла), которая может выполняться многократно (для новых исходных данных) до удовлетворения некоторого условия.

• Вспомогательный (подчиненный) алгоритм (процедура) — алгоритм, ранее разработанный и целиком используемый при алгоритмизации конкретной задачи.

В некоторых случаях при наличии одинаковых последовательностей указаний (команд) для различных данных с целью сокращения записи также выделяют вспомогательный алгоритм.

На всех этапах подготовки к алгоритмизации задачи широко используется структурное представление алгоритма.

• Структурная блок-схема, граф-схема алгоритма — графическое изображение алгоритма в виде схемы связанных между собой с помощью стрелок (линий перехода) блоков — графических символов, каждый из которых соответствует одному шагу алгоритма.

Внутри блока дается описание соответствующего действия.

Графическое изображение алгоритма широко используется перед программированием задачи вследствие его наглядности, так как зрительное восприятие обычно облегчает процесс написания программы, ее корректировки при возможных ошибках, осмысливание процесса обработки информации.

Можно встретить даже такое утверждение: “Внешне алгоритм представляет собой схему — набор прямоугольников и других символов, внутри которых записывается, что вычисляется, что вводится в машину и что выдается на печать и другие средства отображения информации “.

Представление алгоритмов

Формы записи алгоритма:

Обычно сначала (на уровне идеи) алгоритм описывается словами, но по мере приближения к реализации он обретает всё более формальные очертания и формулировку на языке, понятном исполнителю (например, машинный код).

Пример

В качестве примера можно привести алгоритм Евклида.

Алгоритм Евклида — эффективный метод вычисления наибольшего общего делителя (НОД). Назван в честь греческого математика Евклида; один из древнейших алгоритмов, который используют до сих пор[22].

Описан в «Началах» Евклида (примерно 300 до н. э.), а именно в книгах VII и X. В седьмой книге описан алгоритм для целых чисел, а в десятой — для длин отрезков.

Существует несколько вариантов алгоритма, ниже записанный в псевдокоде рекурсивный вариант:

функция нод(a, b) если b = 0 возврат a иначевозврат нод(b, a mod b)

НОД чисел 1599 и 650:

Шаг 11599 = 650*2 + 299
Шаг 2650 = 299*2 + 52
Шаг 3299 = 52*5 + 39
Шаг 452 = 39*1 + 13
Шаг 539 = 13*3 + 0

   

Источник: http://msk.edu.ua/ivk/Informatika/1_kurs/Z32/algoritm.php

Что такое алгоритм — xBB.uz

Действительно, что такое алгоритм? Слово встречается часто, и многие вроде бы понимают его значение. Однако для нас туманное «вроде бы» неприемлемо, мы будем раскладывать всё по полочкам, подробно растолковывать и прояснять. Ну а начнём, как обычно, с краткой истории возникновения обсуждаемого понятия.

История

В 825-м году персидский математик аль-Хорезми написал трактат с названием «Книга о сложении и вычитании».

В Европу данный труд попал в переводе на латинский язык и был озаглавлен «Algoritmi de numero Indorum», то бишь, «Алгоритмы о счёте индийском». Так фамилия аль-Хорезми превратилась в «алгоритм».

А от названия персидского оригинала произошло слово «алгебра» (от «аль-джебр», сложение).

В общем, с тех пор книжки о счётном искусстве стали традиционно называть Алгоритмами, в разных вариантах этого слова. Например, «Algorismus vulgaris», написанная английским астрономом Иоанном Сакробоско в 1250-м.

Однако в более конкретном смысле понятие «алгоритм» употребил в одном из своих трудов немецкий учёный Готфрид Лейбниц. С 1684-го термин стал обозначать систематический способ исчисления.

В двадцатом веке, в 1936-м году, английский математик Алан Мэтисон Тьюринг вывел концепцию абстрактной вычислительной машины. Она так и называется: «Машина Тьюринга». Именно тогда пророк компьютерной эпохи чётко связал понятие «алгоритм» с вычислительной техникой и программированием.

Что это такое

Суть концепции алгоритма такова. Во-первых, имеется набор входных данных, которые будут обрабатываться. Естественно, не каких попало, ведь алгоритм должен оказаться способным их переварить.

Во-вторых, сам алгоритм, оформленный теми или иными средствами. Это попросту набор инструкций, последовательно выполняющих некие действия, необходимые для обработки входных данных.

В-третьих, в результате выполнения инструкций должен появиться какой-то результат — выходные данные. Иначе вообще незачем что-либо делать, если никакого толку не ожидается.

Набор инструкций может быть простым, линейным, когда команды выполняются одна за другой, шаг за шагом. А может разветвляться, закольцовываться в циклы, возвращаться к уже пройденным этапам, вызывать другие наборы инструкций, вплоть до совершенно головоломных комбинаций. Собственно говоря, именно так множество компьютерных программ и работает.

Алгоритм в любом случае обязан выдавать какой-то результат, доводить свою работу до завершения. Если при одних и тех же входящих данных оный результат оказывается каждый раз иным, или же на выходе вообще ничего нет, то сие означает, что алгоритм содержит ошибки.

Блок-схемы

Иногда программное обеспечение является настолько сложным, что в нём крайне трудно разобраться без наглядного представления алгоритмов. Поэтому составляют блок-схемы, показывающие структуру софта. Мол, глядите, вот это делает то-то, с тем оно связано так, а с этим — вот так.

В конце восьмидесятых годов прошлого века в рамках космической программы «Буран» был разработан алгоритмический язык «Дракон». Его концепция такова: человек работает не с текстом исходного кода, а с графическим представлением готовых модулей («икон»), указывая, какие алгоритмы что делают и с чем связаны.

К «Дракону» теоретически можно прикручивать «традиционные» языки программирования. Получится бы «Дракон-Си», «Дракон-Perl», «Дракон-JAVA» и так далее. Главное — сделать транслятор из блок-схем («дракон-схем») в нужный язык.

Правда, как и многие другие удобные вещи, данная разработка малость подзабыта.

Псевдокод

Псевдокод — это неформальное описание алгоритмов в виде, понятном для людей. Не в виде графических схем, не на каком-либо языке программирования, а простыми человеческими словами или их сокращениями. Примерно так:

алг Некая программа нач вывести ('Привет, мир!') кон алг Некая программа

Теперь, когда суть алгоритма ясна, остаётся лишь заменить все эти «алг» («алгоритм»), «нач» («начало»), «вывести» и «кон» («конец») на стандартные средства выбранного языка программирования.

Заключение

Даже самое простое приложение, выводящее на экран «Привет, мир!», содержит в себе алгоритм. Причём, один и тот же, независимо от использованного языка.

Следовательно, алгоритм как таковой всегда первичен, а оформление его с помощью какого-либо языка программирования — это уже вторично. Тем более что средств такого оформления нынче много.

vanilinkin, специально для xBB.uz, 25.03.2012

Предыдущие публикации:

Последнее редактирование: 2012-03-25 05:17:40

Метки материала: что такое, что, алгоритм, что такое алгоритм, такое, по, софт, информатика, информационные технологии, программирование, программное обеспечение, it, ит, hi tech, информация и информатика, software, разработка по, программное обеспечение по, high tech

Источник: http://xbb.uz/IT/Chto-takoe-algoritm

«VBA Разработка алгоритма. Блок-схема. Структуры алгоритмов»

2.1 Разработка алгоритма.
2.2 Блок-схема.
2.3 Структуры алгоритмов.

2.1 Разработка алгоритма.

Алгоритм – это

a. описание последовательности действий для решения задачи или достижения поставленной цели;

b. правила выполнения основных операций обработки данных;

c. описание вычислений по математическим формулам.

Перед началом разработки алгоритма необходимо четко уяснить задачу: что требуется получить в качестве результата, какие исходные данные необходимы и какие имеются в наличии, какие существуют ограничения на эти данные. Далее требуется записать, какие действия необходимо предпринять для получения из исходных данных требуемого результата.

На практике наиболее распространены следующие формы представления алгоритмов:

 словесная (записи на естественном языке);  графическая (изображения из графических символов);  псевдокоды (полуформализованные описания алгоритмов на условном алгоритмическом языке, включающие в себя как элементы языка программирования, так и фразы естественного языка, общепринятые математические обозначения и др.);  программная (тексты на языках программирования).

Словесный способ записи алгоритмов представляет собой описание последовательных этапов обработки данных. Алгоритм задается в произвольном изложении на естественном языке.

Пример. Записать алгоритм нахождения наибольшего общего делителя (НОД) двух натуральных чисел.

Алгоритм может быть следующим:

1. задать два числа;

2. если числа равны, то взять любое из них в качестве ответа и остановиться, в противном случае продолжить выполнение алгоритма;

3. определить большее из чисел;

4. заменить большее из чисел разностью большего и меньшего из чисел;

5. повторить алгоритм с шага 2.

Описанный алгоритм применим к любым натуральным числам и должен приводить к решению поставленной задачи. Убедитесь в этом самостоятельно, определив с помощью этого алгоритма наибольший общий делитель чисел 125 и 75.

Словесный способ не имеет широкого распространения по следующим причинам:

 такие описания строго не формализуемы;  страдают многословностью записей;  допускают неоднозначность толкования отдельных предписаний.

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.

При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

Такое графическое представление называется схемой алгоритма или блок-схемой.

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Он занимает промежуточное место между естественным и формальным языками.

С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.

Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

2.2 Блок-схема

Блок-схемой называют графическое представление алгоритма, в котором он изображается в виде последовательности связанных между собой функциональных блоков, каждый из которых соответствует выполнению одного или нескольких действий.

В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий.

https://www.youtube.com/watch?v=yhhiTpJJ-HA

Приведем наиболее часто употребляемые символы.

Название символаОбозначение и пример заполненияПояснение
ПроцессВычислительное действие или последовательность действий
РешениеПроверка условий
МодификацияНачало цикла
Предопределенный процессВычисления по подпрограмме, стандартной подпрограмме
Ввод-выводВвод-вывод в общем виде
Пуск-остановНачало, конец алгоритма, вход и выход в подпрограмму
ДокументВывод результатов на печать

Блок “процесс” применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок “решение” используется для обозначения переходов управления по условию. В каждом блоке “решение” должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок “модификация” используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок “предопределенный процесс” используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

Пример. Составить блок-схему алгоритма определения высот ha, hb, hc треугольника со сторонами a, b, c, если

где p = (a + b + c) / 2. 
Решение. Введем обозначение  тогда ha = t/a, hb = t/b, hc = t/c. Блок-схема должна содержать начало, ввод a, b, c, вычисление p, t, ha, hb, hc, вывод результатов и останов. 

2.3 Структуры алгоритмов

Алгоритмы можно представлять как некоторые структуры, состоящие из отдельных базовых (т.е. основных) элементов. Естественно, что при таком подходе к алгоритмам изучение основных принципов их конструирования должно начинаться с изучения этих базовых элементов

Логическая структура любого алгоритма может быть представлена комбинацией трех базовых структур: следование, ветвление, цикл.

Характерной особенностью базовых структур является наличие в них одного входа и одного выхода.

1. Базовая структура следование. Образуется из последовательности действий, следующих одно за другим:

2. Базовая структура ветвление. Обеспечивает в зависимости от результата проверки условия (да или нет) выбор одного из альтернативных путей работы алгоритма. Каждый из путей ведет к общему выходу, так что работа алгоритма будет продолжаться независимо от того, какой путь будет выбран.

Структура ветвление существует в четырех основных вариантах:

 если-то;  если-то-иначе;  выбор;  выбор-иначе. 1) если-то если условие то действия конец если 2) если-то-иначе если условие то действия 1 иначе действия 2 конец если 3) выбор выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N конец выбора 4) выбор-иначе выбор при условие 1: действия 1 при условие 2: действия 2 . . . . . . . . . . . . при условие N: действия N иначе действия N+1 конец выбора

Пример. Составить блок-схему алгоритма вычисления функции

Базовая структура цикл. Обеспечивает многократное выполнение некоторой совокупности действий, которая называется телом цикла.

Структура цикл существует в трех основных вариантах:

Цикл типа для.

Предписывает выполнять тело цикла для всех значений некоторой переменной (параметра цикла) в заданном диапазоне.

Цикл типа пока.

Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока.

Цикл типа делать – пока.

Предписывает выполнять тело цикла до тех пор, пока выполняется условие, записанное после слова пока. Условие проверяется после выполнения тела цикла.

Заметим, что циклы для и пока называют также циклами с предпроверкой условия а циклы делать – пока – циклами с постпроверкой условия. Иными словами, тела циклов для и пока могут не выполниться ни разу, если условие окончания цикла изначально не верно. Тело цикла делать – пока выполнится как минимум один раз, даже если условие окончания цикла изначально не верно.

цикл для i от i1 до i2 шаг i3 тело цикла (последовательность действий) конец цикла цикл пока условие тело цикла (последовательность действий) конец цикла цикл делать тело цикла (последовательность действий) пока условие конец цикла

Пример. Составить блок-схему алгоритма вычисления функции

yk = sin (kx) + cos (k/x), k = 1, 2, …, 50

Пример. Составить блок-схему вычисления функции

y = a3 / (a2 + x2)

при x, изменяющимся от x = 0 до x = 3 с шагом Dx = 0,1

Итерационные циклы. Особенностью итерационного цикла является то, что число повторений операторов тела цикла заранее неизвестно. Для его организации используется цикл типа пока. Выход из итерационного цикла осуществляется в случае выполнения заданного условия.

На каждом шаге вычислений происходит последовательное приближение и проверка условия достижения искомого результата.

Пример. Составить алгоритм вычисления суммы ряда

с заданной точностью (для данного знакочередующегося степенного ряда требуемая точность будет достигнута, когда очередное слагаемое станет по абсолютной величине меньше).

Вычисление сумм – типичная циклическая задача. Особенностью же нашей конкретной задачи является то, что число слагаемых (а, следовательно, и число повторений тела цикла) заранее неизвестно. Поэтому выполнение цикла должно завершиться в момент достижения требуемой точности.

При составлении алгоритма нужно учесть, что знаки слагаемых чередуются и степень числа х в числителях слагаемых возрастает.

Решая эту задачу “в лоб” путем вычисления на каждом i-ом шаге частичной суммы

S:=S+(-1)**(i-1)*x**i/i ,

мы получим очень неэффективный алгоритм, требующий выполнения большого числа операций. Гораздо лучше организовать вычисления следующим образом: если обозначить числитель какого-либо слагаемого буквой р, то у следующего слагаемого числитель будет равен -р*х (знак минус обеспечивает чередование знаков слагаемых), а само слагаемое m

будет равно p/i, где i – номер слагаемого.

Алгоритм, в состав которого входит итерационный цикл, называется итерационным алгоритмом. Итерационные алгоритмы используются при реализации итерационных численных методов.

В итерационных алгоритмах необходимо обеспечить обязательное достижение условия выхода из цикла (сходимость итерационного процесса). В противном случае произойдет зацикливание алгоритма, т.е.

не будет выполняться основное свойство алгоритма – результативность.

Вложенные циклы.

Возможны случаи, когда внутри тела цикла необходимо повторять некоторую последовательность операторов, т. е. организовать внутренний цикл. Такая структура получила название цикла в цикле или вложенных циклов. Глубина вложения циклов (то есть количество вложенных друг в друга циклов) может быть различной.

При использовании такой структуры для экономии машинного времени необходимо выносить из внутреннего цикла во внешний все операторы, которые не зависят от параметра внутреннего цикла.

Пример вложенных циклов для. Вычислить сумму элементов заданной матрицы А(5,3).

Пример вложенных циклов пока. Вычислить произведение тех элементов заданной матрицы A(10,10), которые расположены на пересечении четных строк и четных столбцов.

Источник: http://www.mini-soft.ru/document/elektronnyy-uchebnik-po-vba-excel-2

Мое Здоровье
Добавить комментарий