Гематоофтальмический барьер

Гематоофтальмический барьер ♥

Гематоофтальмический барьер

Гематоофтальмический барьер – специализированные морфологические структуры, регулирующие транспорт жидкостей и веществ между сосудистым руслом и тканями глаза, запрещающие проникновение чужеродных (измененных)клеток и молекул, а также активированных иммунокомпетентных клеток и антител.

Гематоретинальный барьер – составная часть гематоофтальмического барьера, представленная стенками кровеносных капилляров сетчатки; проницаемость гематоретинального барьера ниже, чем средняя проницаемость гематоофтальмического барьера. Бывает внешний и внутренний.

Внутренний образован плотными контактами междунефенестрованным эндотелием кровеносных сосудов сетчатки (для внутренних слоев), подобно ГЭБ. Внешний образуется пигментным эпителием сетчатки (для наружных слоев), который получает питательные вещества из хориокапилляров.

Пауль Эрлих получил первое свидетельство о существовании гистогематического барьера еще в 1885 г.

Специализированные гистогематические барьеры

  • гематоартикулярный (между кровью и синовиальной жидкостью)
  • гематоэнцефалический (между кровью и центральной нервной системой)
  • гематоофтальмический (между кровью и внутриглазной жидкостью)
  • гематолабиринтный (между кровью и эндолимфой лабиринта)
  • гематотестикулярный, гематоовариальный (барьер между кровью и половыми железами)

Концепция ГОБ

Середина XX в. Капилляры, эпителий цилиарного тела – базовая анатомическая структура. Основная функция – выработка водянистой влаги, обеспечение метаболизма бессосудистых тканей глаза.

Конец XX в.  Эта структура была определена как цилиарная гистогематическая  система ГРБ, регулирующая изменения между кровью и внутриглазными жидкостями.

1979 г. Выделение гистогематической системы из кроверетинального барьера  J. Cuncha-Vaz. Основная функция – ограничение (отделение) элементов нервной ткани сетчатки от непосредственного контакта с кровью.

2002 – 2004 г. Выделение папиллярной гистогематической системы В.И.Морозов, А.А. Яковлев.

Гистогематические системы ГОБ

Гематоофтальмический барьер (ГОБ) выполняет барьерную функцию в отношении прозрачных сред глаза, регулирует состав внутриглазной жидкости, обеспечивая избирательное поступление в хрусталик и роговицу необходимых питательных веществ.

Клинические исследования позволили уточнить и расширить понятие о гематоофтальмическом барьере, включив в него гистагематическую систему, а также говорить о существовании в норме и патологии трёх его составляющих: иридоцилиарной, хориоретинальной и папиллярной

Иридоцилиарная

  • плотно расположенный эндотелий артериальных сосудов радужки с широкими адвентициальными муфтами
  • эндотелий капилляров радужки(IE),
  • базальная мембрана капилляров радужки
  • перициты
  • пигментный эпителий (IPE) заднего эктодермального листка радужки
  • непрерывный слой пигментного эпителия радужки и цилиарного тела (CBPE)
  • мембрана Бруха цилиарного тела
  • эндотелий, базальная мембрана капилляров цилиарных отростков
  • беспигментный эпителий цилиарных отростков

Хориоретинальная 

  • пигментный эпителий сетчатки (RPE)
  • мембрана Бруха
  • плотнорасположенный эндотелий артерий сетчатки
  • эндотелий (RE), базальная мембрана капилляров сетчатки,
  • перициты
  • нейроглиальные элементы сетчатки     

Папиллярная

  • эндотелий артериальных сосудов, периваскулярная базальная мембрана сосудов диска
  • эндотелий капилляров, базальная мембрана сети капилляров, преламилярного отдела диска
  • перициты
  • нейроглия зоны диска, плазматические мембраны глиальных клеток
  • отростки астроцитов, отделяющие аксоны ганглиозных клеток сетчатки от кровеносных капилляров 

Кровеносные капилляры в глазу непосредственно не соприкасаются с клетками и тканями. Весь сложнейший обмен между капиллярами и клетками происходит через интерстициальную жидкость на ультраструктурном уровне и характеризуется как механизмы капиллярной, клеточной и мембранной проницаемости.

Гематоофтальмический барьер обладает селективной проницаемостью к ионам кальция, калия, натрия, фосфора.

Проницаемостьгематоофтальмического барьера изменяется при изменении тонуса тройничного и симпатических нервов. Воспалительный процесс в оболочках глаза приводит к резкому ослаблению функций гематоофтальмического барьера, ионизирующее излучение и местное облучение рентгеновскими лучами вызывают повышение проницаемости его сосудистой оболочки.

Существование барьерной системы кровь–сетчатка хорошо иллюстрируется флюоресцентной ангиографией, дающей возможность увидеть грубые нарушения барьера в виде экстравазального выхода флюоресцеина.

Однако анализ ангиограмм с помощью различных количественных методик не позволяет точно оценить степень нарушения сосудистой проницаемости.

Флюоресцеин, имея сравнительно небольшой размер молекулы и молекулярную массу, в очень малых количествах проникает из плазмы через барьерные системы в стекловидное тело  нормального глаза. При любых изменениях, сопровождающихся повышением проницаемости, количество его в стекловидном теле повышается.

Высокая эмиссионная способность флюоресцеина позволяет регистрировать его наличие в стекловидном теле в минимальных концентрациях и рассчитывать концентрацию по интенсивности свечения под действием возбуждающего синего света, проводя, таким образом, количественную оценку состояния барьерных систем глаза.

Факторы, повышающие проницаемость ГОБ

  • Аденозин,
  • простагландин Е1 (PGE1),
  • интерлейкин-1β (IL1β),
  • фактор некроза опухоли α(TNFα)
  • сосудистый эндотелиальный фактор роста (VEGF) 

Причины повышения проницаемости ГОБ

  • Воспалительные процессы
  • Активация эндотелия
  • Эндотелиальная дисфункция
  • Повреждение эндотелия
  • Гипоксия
  • Травмы
  • Хирургические вмешательства
  • Дегенеративные процессы (усиленное фосфорилирование, окислительная модификация белков плотных контактов, накопление AGEs продуктов)

Источник: https://eyesfor.me/glossary-of-terms/g/blood-ocular-barrier.html

Гэб или гематоэнцефалический барьер: его строение и значение

Гэб или гематоэнцефалический барьер: его строение и значение

Ни для кого не является секретом, что организм должен поддерживать постоянство своей внутренней среды, или гомеостаз, затрачивая для этого энергию, иначе он не будет отличаться от неживой природы. Так, кожа защищает наш организм от внешнего мира на органном уровне.

Но оказывается, значение имеют и другие барьеры, которые образуются между кровью и некоторыми тканями. Они называются гистогематическими. Эти барьеры необходимы по различным причинам. Иногда нужно механически ограничить проникновение крови к тканям. Примерами таких барьеров служат:

  • гематоартикулярный барьер – между кровью и суставными поверхностями;
  • гематоофтальмический барьер – между кровью и светопроводящими средами глазного яблока.

Все знают, на своем опыте, что, разделывая мясо видно, что поверхность суставов всегда лишена контакта с кровью. В том случае, если кровь изливается в полость сустава (гемартроз), то она способствует его зарастанию, или анкилозу.

Понятно, почему нужен гематоофтальмический барьер: внутри глаза есть прозрачные среды, например, стекловидное тело. Его задача – как можно меньше поглощать проходящий свет.

В том случае, если не будет этого барьера, то кровь будет проникать в стекловидное тело, и мы будем лишены возможности видеть.

Что такое ГЭБ?

Один из самых интересных и загадочных гистогематических барьеров – это гематоэнцефалический барьер, или преграда между капиллярной кровью и нейронами центральной нервной системы. Говоря современным, информационным языком, между капиллярами и веществом головного мозга существует полностью «защищенное соединение».

Смысл гематоэнцефалического барьера (аббревиатура – ГЭБ), состоит в том, что нейроны не вступают в непосредственный контакт с капиллярной сетью, а взаимодействуют с питающими капиллярами через «посредников». Этими посредниками являются астроциты, или клетки нейроглии.

Нейроглия – это вспомогательная ткань центральной нервной системы, которая выполняет множество функций, например опорную, поддерживая нейроны, и трофическую, питая их. В данном случае, астроциты непосредственно забирают из капилляра все, что нужно нейронам, и передают им. Одновременно они контролируют, чтобы в головной мозг не попали вредные и чужеродные вещества.

Таким образом, через гематоэнцефалический барьер не проходят не только различные токсины, но и многие лекарства, и это составляет предмет исследования современной медицины, поскольку с каждым днем количество препаратов, которые регистрируются для лечения заболеваний головного мозга, а также антибактериальных и противовирусных препаратов, все увеличивается.

Немного истории

Известный врач и микробиолог, Пауль Эрлих, стал мировой знаменитостью, благодаря изобретению сальварсана, или препарата № 606, который стал первым, пусть токсичным, но эффективным препаратом для лечения застарелого сифилиса. Это лекарство содержало мышьяк.

Но Эрлих также очень много экспериментировал с красителями.

Он был уверен, что точно так же, как краситель плотно пристает к ткани (индиго, пурпур, кармин), он пристанет и к болезнетворному микроорганизму, стоит только найти такое вещество.

Конечно, он должен не только прочно фиксироваться на микробной клетке, но и быть смертельным для микробов. Несомненно, «подлил масла в огонь» тот факт, что он женился на дочери известного и зажиточного фабриканта – текстильщика.

И Эрлих начал экспериментировать с различными и очень ядовитыми красками: анилиновыми и трипановыми.

Вскрывая лабораторных животных, он убеждался, что краситель проникает во все органы и ткани, но не имеет возможности диффундировать (проникать) в головной мозг, который оставался бледным.

Вначале его выводы были неверными: он предположил, что просто краситель не окрашивает мозг по причине того, что в нем много жира, и он отталкивает краску.

А затем открытия, предшествующие открытию гематоэнцефалического барьера, посыпались, как из рога изобилия, и сама идея стала постепенно оформляться в умах ученых. Наибольшее значение играли следующие эксперименты:

  • если ввести краситель внутривенно, то максимум, что он способен окрасить – это хориоидальные сосудистые сплетения желудочков головного мозга. Дальше ему «путь закрыт»;
  • если принудительно ввести краситель в ликвор, выполнив люмбальную пункцию, то мозг окрашивался. Однако, «наружу» из ликвора краситель не попадал, и остальные ткани оставались бесцветными.

После этого совершенно логично было предположено, что ликвор – это жидкость, которая находится «по ту сторону» преграды, главная задача которой – защитить центральную нервную систему.

Впервые термин ГЭБ появился в 1900 году, сто шестнадцать лет назад. В англоязычной медицинской литературе он именуется «blood-brain barrier», а в русском языке название привилось в виде «гематоэнцефалического барьера».

В дальнейшем этот феномен изучался достаточно подробно. Перед второй мировой войной появились данные о том, что есть гематоэнцефалический и гематоликворный барьер, а также есть гематоневральный вариант, который находится не в ЦНС, а расположен в периферических нервах.

Строение и функции барьера

Именно от бесперебойной работы гематоэнцефалического барьера зависит наша жизнь. Ведь наш головной мозг потребляет пятую часть всего количества кислорода и глюкозы, и при этом его вес составляет не 20% всей массы тела, а около 2%, то есть потребление мозгом питательных веществ и кислорода в 10 раз выше среднего арифметического значения.

В отличие, например, от клеток печени, мозг работает только «на кислороде», и аэробный гликолиз – это единственный возможный вариант существования всех без исключения нейронов.

В том случае, если в течение 10-12 секунд питание нейронов прекращается, то человек теряет сознание, а после остановки кровообращения, находясь в состоянии клинической смерти, шансы на полное восстановление функции мозга существуют только на протяжении 5 -6 минут.

Это время увеличивается при сильном охлаждении организма, но при нормальной температуре тела окончательная гибель мозга происходит через 8-10 минут, поэтому только интенсивная деятельность ГЭБ позволяет нам быть «в форме».

Известно, что многие неврологические заболевания развиваются только вследствие того, что нарушена проницаемость гематоэнцефалического барьера, в сторону его повышения.

Мы не будем подробно вдаваться в гистологию и биохимию структур, составляющих барьер. Отметим только лишь, что строение гематоэнцефалического барьера включает в себя особую структуру капилляров. Известны следующие особенности, приводящие к появлению барьера:

  • плотные контакты между эндотелиальными клетками, выстилающими капилляры изнутри.

В других органах и тканях эндотелий капилляров выполнен «небрежно», и между клетками есть большие промежутки, через которые происходит свободный обмен тканевой жидкостью с периваскулярным пространством. Там, где капилляры формируют гематоэнцефалический барьер, клетки эндотелия расположены очень плотно, и герметичность не нарушается;

  • энергетические станции – митохондрии в капиллярах превышает физиологическую потребность в таковых в других местах, поскольку гематоэнцефалический барьер требует больших затрат энергии;
  • высота клеток эндотелия существенно ниже, чем в сосудах другой локализации, а количество транспортных ферментов в цитоплазме клетки значительно выше. Это позволяет отвести большую роль трансмембранному цитоплазматическому транспорту;
  • эндотелий сосудов в своей глубине содержит плотную, скелетообразующую базальную мембрану, к которой снаружи прилегают отростки астроцитов;

Кроме особенностей эндотелия, снаружи от капилляров существуют особые вспомогательные клетки – перициты. Что такое перицит? Это клетка, которая может снаружи регулировать просвет капилляра, а при необходимости может обладать функциями макрофага, к захвату и уничтожению вредных клеток.

Поэтому, еще не дойдя до нейронов, мы можем отметить две линии защиты гематоэнцефалического барьера: первая – это плотные соединения эндотелиоцитов и активный транспорт, а вторая – это макрофагальная активность перицитов.

Далее гематоэнцефалический барьер включает в себя большое количество астроцитов, которые и составляют наибольшую массу этой гистогематической преграды. Это небольшие клетки, которые окружают нейроны, и, по определению их роли, умеют «почти всё».

Они постоянно обмениваются веществами с эндотелием, контролируют сохранность плотных контактов, активность перицитов и просвет капилляров. Кроме того, головному мозгу нужен холестерин, но он не может проникнуть из крови ни в ликвор, ни пройти сквозь гематоэнцефалический барьер. Поэтому астроциты берут на себя его синтез, помимо основных функций.

Кстати, одним из факторов патогенеза рассеянного склероза является нарушение миелинизации дендритов и аксонов. А для образования миелина нужен холестерин. Поэтому роль дисфункции ГЭБ в развитии демиелинизирующих заболеваний является установленной, и в последнее время изучается.

Там, где нет барьеров

А есть ли такие места в центральной нервной системе, где не существует гематоэнцефалического барьера? Казалось бы, это невозможно: столько трудов было приложено к тому, чтобы создать несколько уровней защиты от внешних вредных веществ.

Но, оказывается, в некоторых местах ГЭБ не составляет единую «стену» защиты, а нем имеются отверстия. Они нужны для тех веществ, которые вырабатываются головным мозгом и отправляются на периферию в качестве команд: это гормоны гипофиза. Поэтому есть свободные участки, как раз в зоне гипофиза, и эпифиза.

Они существуют, чтобы гормоны и нейротрансмиттеры могли свободно проникать в кровь.

Существует и другая зона, свободная от ГЭБ, которая находится в районе ромбовидной ямки или дна 4 желудочка головного мозга. Там находится рвотный центр.

Известно, что рвота может возникать не только вследствие механического раздражения задней стенки глотки, но и при наличии токсинов, попавших в кровь.

Поэтому именно в этой области и существуют особые нейроны, которые постоянно производят «мониторинг» качества крови на наличие вредных веществ.

Как только их концентрация достигнет определенной величины, эти нейроны активируются, вызывая чувство тошноты, а затем и рвоту. Справедливости ради нужно сказать, что не всегда рвота связана с концентрацией вредных веществ.

Иногда, при значительном повышении внутричерепного давления (при гидроцефалии, менингитах) рвотный центр активируется вследствие прямого избыточного давления при развитии синдрома внутричерепной гипертензии.

Поэтому развивается так называемая центральная, или мозговая рвота, которая может наступить внезапно, и без всяких признаков тошноты.

Когда нарушается проницаемость

Гематоэнцефалический барьер и его функции могут страдать при многих заболеваниях. Конечно, классическим примером служат инфекции, при которых токсины и бактериальные антигены могут поражать барьер и повышать его проницаемость. Например, это происходит при менингитах и энцефалитах, когда возбудитель определяется в ликворе и на оболочках головного мозга.

Но в этом есть и положительный момент: после нарушения функции барьера сквозь него могут проникать антибактериальные препараты, которые в норме совсем не могут через него проникнуть, и, благодаря этому факту, антибиотики, проникающие через барьер, позволяют эффективно справиться с инфекцией.

Часто нарушается проницаемость при развитии миелинизации – рассеянном склерозе, остром рассеянном энцефаломиелите. Медленно, но неуклонно разрушение функции барьера происходит при сахарном диабете.

Чем дольше время заболевания, и чем выше уровень гликемии, тем больше нарушается барьерная функция.

При этом не так страшно возникновение гипогликемии, которая, хоть и является испытанием голодом для нейронов, быстро заканчивается и не успевает навредить.

Гипергликемия гораздо страшнее, поскольку она может вызвать поражение нервной системы на различных уровнях, например, полинейропатия по типу «носков» и «перчаток» также может развиться при наличии сахарного диабета.

При ишемическом и геморрагическом инсульте также происходит очаговое нарушение барьера, соответствующее развитию перифокальной зоны некроза. Различные опухоли, которые вызывают отек вещества мозга и его компрессию, также способствуют повышению проницаемости сосудов головного мозга.

В заключение нужно сказать, что такой гистогематический барьер, как ГЭБ, является одним из самых совершенных в организме.

Он имеет несколько уровней защиты, снабжается энергией в 10 раз лучше, чем обычные зоны капиллярного газообмена, и позволяет сохранять гомеостаз центральной нервной системы, что дает ей возможность полностью сосредоточиться на управлении витальными функциями и на высшей нервной деятельности.

Погребной Станислав Леонидович, невролог

Оцените эту статью:

Всего : 95

4 95

Источник: https://mozgius.ru/stroenie/gematoehncefalicheskij-barer.html

Гематоэнцефалический барьер — безопасность метаболизма

Гематоэнцефалический барьер – это своего рода преграда, которая препятствует прониканию из крови в ткань мозга токсических веществ, микроорганизмов, а также антибиотиков.

Мозговой барьер – это фильтр, сквозь который из артерии в мозг попадают полезные вещества, а в венозное русло выводятся различные отработанные продукты.

Барьер на пути к мозгу является механизмом, защищающим ткани от посторонних элементов и регулирующим неизменность состава межклеточной жидкости.

Общая информация о гематоэнцефалическом барьере

Естественный заслон способствует защите ткани мозга от всевозможных инородных тел и ядовитых шлаков, которые проникли в кровь или образовались непосредственно в организме. Преграда задерживает компоненты, которые могут навредить очень чувствительным клеткам головного, а также спинного мозга.
Функция ГЭБ – это установить некий щит, способствующий избирательной пропускаемости.

Естественный барьер на пути к тканям мозга пропускает одни вещества и является непроницаемым для иных.

Правда, непроницаемость данной преграды относительна и зависит от здоровья человека, от длительности пребывания и концентрации различных веществ в его крови, от всякого рода внешних причин.

Сам барьер состоит из различных анатомических компонентов. А они не только оберегают мозг, но и следят за его питанием, обеспечивают жизнедеятельность, выводят отработанные продукты.

ГЭБ является механизмом, который налаживает попадание имеющихся в крови полезных компонентов в спинномозговую жидкость и нервную ткань. Это не какая-то совокупность органов, а функциональная концепция. Большинство полезных веществ поступает в ткани мозга не через ликворные маршруты, а благодаря капиллярам.

Физиология — как работает ГЭБ

Мозговой барьер – это не отдельный орган тела, а совокупность различных анатомических составляющих. Эти составляющие исполняют роль преграды и обладают другими полезными свойствами. Мозговые капилляры – первые компоненты, входящие в структуру этого своеобразного преграждения.

задача мозговых капилляров – это доставка крови непосредственно к мозгу человека. Через стенки клеток в мозг проникает всё необходимое питание, а продукты обмена, наоборот, выводятся. Процесс этот происходит непрерывно.

Но только не все вещества, находящиеся в крови, могут проникнуть сквозь эти стенки.

Мозговые капилляры – это своего рода первоначальная оборонительная линия. Для некоторых веществ она проходима, а для остальных – полупроницаема или совершенно непроходима.

Структура капилляров, точнее, их внутренней прослойки такова, что разнообразные компоненты перемещаются из крови в ликвор сквозь щёлочки между клетками, а также сквозь тончайшие зоны этих клеток.
Причём стенки капилляров не обладают такими порами, как клетки иных органов. Эти элементы попросту нагромождаются друг на дружку.

Места стыковок между ними заслонены специальными пластинами. Щёлочки между клетками слишком узенькие. Передвижение жидкости из капилляров в нервную ткань происходит сквозь их стенки.

Структура клеток капилляров имеет некоторые особенности. Клетки состоят из набора митохондрий, а это является признаком о происходящих в них энергетических процессах.

В капиллярных клетках слишком мало вакуолей, в особенности в прилегающей к просвету капилляра стороне. Но на рубеже с нервной материей их количество намного выше.

А это свидетельствует о том, что пропускаемость капилляра по направлению из кровеносной системы к тканям мозга намного ниже, чем в противоположной направленности.

Важную роль в реализации преграждающей задачи капилляров играет находящаяся под покровом эндотелиальных элементов очень стойкая мембрана с прослойкой гликокаликса. А составляющие эту прослойку компоненты создают своего рода сеть, которая является ещё одним преграждением для молекул разных компонентов.

Капилляры мозга имеют ферменты, которые снижают активность некоторых химических компонентов, перемещающихся из крови в ткань человеческого мозга.
Но одних капилляров мало для осуществления заградительной задачи. Вторая черта преграждений располагается между капиллярами и нейронами.

В этом месте природой создано переплетение астроцитов с их отростками и образование ещё одного защитного слоя – нейроглии.

Покрывается почти весь поверхностный слой мозговых капилляров благодаря присосковым ножкам астроцитов. Они также могут расширять просвет капилляра, или, наоборот, его уменьшать. С их помощью происходит питание нейронов. Присосковые ножки вытягивают из крови нужные нейронам питательные компоненты, а обратно выводят отработанные продукты.

Но естественная преграда состоит не только лишь из нейроглии. Препятствующими свойствами характеризуются обволакивающие мозг мягкие оболочки, а также сосудистые переплетения его боковых желудочков. Пропускаемость сосудистых переплетений, вернее, их капилляров, намного выше, чем мозговых капилляров. А щели между их клетками гораздо шире, но они замкнуты очень прочными контактами.

Именно здесь и находится третья ступень ГЭБ.

Мозговой заслон не только бережёт мозг от посторонних и ядовитых компонентов, имеющихся в крови, но и стабилизирует состав питательной среды, в которой находятся нервные клетки.

Нужные для жизнедеятельности компоненты мозг получает благодаря присосковым ножкам клеток, а также через ликвор. В мозге имеются внеклеточные участки. А на дне микробороздок мозга есть мельчайшие проходы, которые открываются в межклеточные участки. Благодаря ним питательная жидкость прмщатся в мозг и служит питанием для нейронов.

Есть 2 способа питания мозга:• благодаря спинномозговой жидкости;

• сквозь капиллярные стенки.

У здорового человека основным путём попадания компонентов в нервные ткани является гематогенный, а ликворный маршрут – дополнительный. Каким компонентам перемещаться в мозг, а каким нет, решает ГЭБ.

Проницаемость барьера

Мозговая преграда не только останавливает и не допускает к мозгу некоторые вещества, имеющиеся в крови, но и доставляет нужные для метаболизма нервной ткани компоненты. Гидрофобные компоненты, а также пептиды перемещаются в ткани мозга сквозь каналы мембраны клеток, с помощью различных транспортных систем или диффузии.

Существуют такие способы перемещения через ГЭБ:

  1. Межклеточный. Суть системы: питательные продукты передвигаются в мозг сквозь стенки клеток.
  2. Благодаря каналам. В мембране клеток имеются щели – аквапоры. Через них происходит попадание воды. Для глицерина на поверхности мембран клеток также имеются специальные проходы – акваглицеропорины.
  3. Диффузия. Передвижение компонентов может происходить сквозь клеточные мембраны и сквозь межклеточные контакты. Чем липофильнее и меньше проходящее вещество, тем проще оно диффундирует сквозь мембрану клеток.
  4. Диффузия (облегчённая). Многие полезные для мозга компоненты (различные аминокислоты) слишком большие, чтобы пройти сквозь клеточную мембрану. Для них на поверхности клеток существуют специальные транспортёры, а также белковые молекулы.
  5. Активные транспортёры. Перенос различных веществ требует расходов клеточной энергии и осуществляется благодаря активным транспортёрам.
  6. Везикулярный. Происходит связывание полезных для мозга компонентов, перемещение их во внеклеточные участки и высвобождение связанных элементов.

ГЭБ есть во многих участках мозга. Но в шести анатомических образованиях его нет.

Отсутствует барьер на дне 4 желудочка, в шишковидном теле, в нейрогипофизе, в прикреплённой пластинке мозга, в субфорникальном и субкомиссуральном органах.

Проницаемость естественного барьера обуславливается состоянием здоровья человека, а также содержанием в крови гормонов. Болезненное состояние приводит к повышению проницаемости.

Повреждения барьерного щита бывают при таких болезнях:

Таким образом, у здорового человека мозговой щит работает отлично и служит преградой для прохождения разнообразных компонентов в мозг. Происходит это благодаря капиллярам мозга. Их клетки не имеют пор. Кроме того, роль дополнительной липидной преграды играют и астроглии.

Сквозь естественную преграду плохо проходят полярные образования. Но липофильные молекулы проходят к мозгу очень просто. Заслон преодолевается в основном благодаря диффузии или активному передвижению. В организме есть участки мозга, в которых барьер не действует (задняя стенка гипофиза, эпифиз).

Если человек болеет, то проходимость становится выше.

Использование ГЭБ в фармакологии

Мозговой барьер избирательно проходим для различных лекарственных средств. Для того чтобы излечить заболевания мозга лекарства должны проникнуть в его ткани. А это не всегда возможно.

Но во время воспалительных заболеваний мозга проницаемость барьера несколько повышается, в результате чего сквозь него проходят лекарства, которые при нормальном состоянии не преодолели бы это препятствие.
При воспалительных процессах важно преодолеть преграждающий заслон.

Ведь нужно добиться проникновения лекарств в мозг. Но при искусственном преодолении естественного препятствия в мозг порой перемещаются не только лекарства, но и вредные шлаки.

В медицинской практике самым эффективным методом лечения мозга является ввод лекарства в желудочки мозга, другими словами, в обход барьера.

Лекарства, которые плохо проникают сквозь мозговой барьер, могут вводиться под оболочки мозга. Таким образом лечится менингит, а также воспаление мозга.
Медикаменты разрабатываются с учётом проходимости мозгового барьера.

Синтетические анальгетики, имеющие в своём составе морфин, наоборот, обязаны лишь избавлять человека от боли, но не проходить ГЭБ. Существуют антибиотики, лечащие воспалительные процессы, которые отлично проходят мозговой барьер.

К ним относятся: «Нифурател», «Макмирор», «Бимарал», «Метоклопрамид». Хорошо проходят барьер медикаменты: «Мотилиум», «Мотилак». Наилучшая степень прохождения мозгового барьера у «Ампицилина» и «Цефазолина».

Способность проникать сквозь ГЭБ у жирорастворимых соединений намного выше, чем у водорастворимых веществ.

Читайте ещё

Источник: http://NeuroDoc.ru/anatomy/gematoencefalicheskij-barer.html

2.4. Гистогематические барьеры

2.4. Гистогематические барьеры

Понятие гистогематические барьеры предложено для обозначения барьерных структур между кровью и органами.

В отличие от внешних барьеров, отделяющих внутреннюю среду организма, его ткани и клеточные структуры от внешней среды, гистогематические барье­ры являются внутренними, отделяющими кровь от тканевой жид­кости.

Под гистогематическими барьерами понимают комплекс физиологических механизмов, регулирующих обменные процессы между кровью и тканями, обеспечивающих тем самым постоянство состава и физико-химических свойств тканевой жидкости, а также задер­живающих переход в нее  чужеродных веществ из крови.

Гистогематические барьеры, благодаря не только избирательной, но и меняющейся проницаемости, регулируют поступление к клет­кам из крови необходимых пластических и энергетических матери­алов и своевременный отток продуктов клеточного обмена. Таким образом, эти структурно-функциональные механизмы обеспечивают постоянство внутренней среды.

Гистогематические барьеры в раз­личных тканях и органах имеют существенные отличия, а некоторые из них, благодаря определенной специализации, приобретают особую жизненно важную роль.

К числу подобных специализированных барьеров относят гематоэнцефалический барьер (между кровью и мозговой тканью) и гематоофтальмический барьер (между кровью и внутриглазной жидкостью), отличающиеся не только высокой избирательностью проницаемости, но и лишающие забарьерные ткани имму­нологической толерантности (см. ниже).

В результате повреждения этих барьеров макромолекулярные структуры забарьерных тканей воспринимаются иммунологической системой как «чужеродные» для организма, «незнакомые» иммунной системе, и формируется иммун­ный ответ против собственных тканевых структур мозга или глаза называемый  аутоиммунным.

Проницаемость гистогематических барьеров зависит от химическо­го строения молекул переносимых веществ, от их физико-химичес­ких свойств. Так, для растворимых в липидах веществ гистогемати­ческие барьеры более проницаемы, поскольку такие молекулы легче проходят через липидные слои мембран клеток.

По особенностям проницаемости для белков на уровне кровь-ткань все гистогематические барьеры делят на три группы: изолирующие, частично изо­лирующие и неизолирующие.

К изолирующим барьерам относят: ге­матоэнцефалический, гематоликворный, гематонейрональный (на уровне периферической нервной системы), гематотестикулярный, барьер хрусталика глаза.

К частично изолирующим относятся барье­ры на уровне желчных капилляров печени, коры надпочечников, пигментного эпителия глаза между сосудистой и сетчатой оболочка­ми, гематоофтальмический барьер на уровне цилиарных отростков глаза, барьеры щитовидной железы и концевых долек поджелудоч­ной железы.
Неизолирующие барьеры хотя и позволяют белку про­никать из крови в интерстициальную жидкость, однако ограничива­ют его транспорт в микроокружение и цитоплазму паренхиматозных клеток. Такие барьеры существуют в миокарде, скелетных мышцах, мозговом  слое  надпочечников,  околощитовидных  железах.

Основные функции гистогематических барьеров — защитная и регуляторная.

Защитная функция

Защитная функция заключается в задержке  барьерами перехода вредных или излишних веществ эндогенной природы, а также чужеродных молекул из крови в интерстициальную среду и микроокружение клеток. При этом не только сама сосудистая стенка с ее избирательной проницаемостью, но и ячеисто-коллоидные структуры интерстиция препятствуют поступлению таких веществ в микросреду клеток.

Если же произошло проникновение крупномо­лекулярных чужеродных веществ в интерстициальное пространство и они не подверглись здесь адсорбции, фагоцитозу и распаду, то они поступают в лимфу, а не в клеточное микроокружение. Лимфа в этом плане представляет собой как бы «вторую линию обороны», поскольку обеспечивает обезвреживание чужеродных веществ, ре­ализуя  механизмы  иммунитета.

Регуляторная функция

Регуляторная функция гистогематических барьеров подразумевает большое разнообразие процессов, конечной целью которых служит регуляция метаболизма и функций клеток.

Гистогематические барье­ры регулируют состав и свойства микросреды клеток, обеспечивая ее необходимым количеством определенных питательных веществ.

Эти барьеры контролируют поступление к клеткам гуморальной ин­формации о состоянии жизнедеятельности в других органах, а био­логически активные вещества и гормоны, поступающие из крови через барьер к клеткам, меняют в них обмен и функции адекватно общим потребностям  организма.

Основным структурным элементом гистогематических барьеров является стенка кровеносных капилляров. Морфологические и функциональные особенности клеток эндотелия, межклеточного основно­го вещества и базальной мембраны определяют проницаемость ба­рьера.

Содержащиеся в крови вещества могут проникать через ба­рьер двумя путями (рис.2.5.): трансцеллюлярно (через клетки эндо­телия) и парацеллюлярно (через межклеточное основное вещество).

Рис.2.5. Транспорт веществ через стенку капилляра.
Эр — эритроциты, ЭК — эндотелиальные клетки, Л — лейкоциты.

Трансцеллюлярный транспорт

Трансцеллюлярный транспорт веществ определяется свойствами кле­точной мембраны эндотелиоцитов и может быть пассивным (т.е. по концентрационному или электрохимическому градиенту без затрат энергии) и активным (против градиента с затратой энергии).

Транс­целлюлярный перенос веществ может осуществляться и с помощью пиноцитоза, т.е. процесса активного поглощения клетками пузырьков жидкости или коллоидных растворов. Мембрана эндотелиальных клеток имеет поры и фенестры, также участвующие в трансцеллюлярном транспорте веществ.

Эндотелиальные клетки по всему пери­метру покрыты тонким слоем вещества, содержащего в своем соста­ве гликозаминогликаны и, соответственно, существенно влияющего на проницаемость. Перенос веществ через эндотелиальные клетки зависит от состояния метаболизма в эндотелиоцитах.

Существенную роль при этом играют тромбоциты крови, поглощаемые клетками эндотелия для трофических  целей.

Парацеллюлярный транспорт

Парацеллюлярный транспорт или перенос веществ через межкле­точные щели, заполненные основным веществом, окутывающим во­локнистые структуры фибриллярного белка, возможен для молекул разных размеров (от 2 до 30 мк), поскольку в капиллярах размеры межклеточных щелей неодинаковы.

  Состояние проницаемости межклеточных пространств, также как и трансцеллюлярный транспорт, зависит  от  метаболизма  эндотелиоцитов. Вязальная мембрана капилляров разных органов имеет неодинако­вую толщину, а в некоторых тканях прерывиста. Эта структура барье­ра играет роль фильтра, пропускающего молекулы определенного раз­мера.

В состав базальной мембраны входят гликозаминогликаны, спо­собные уменьшать степень полимеризации и адсорбировать ферменты, повышающие проницаемость барьера. Снаружи в базальной мембране располагаются отростчатые клетки — перициты.

Точных сведений о функции этих клеток нет, предполагается, что они выполняют опор­ную роль и  продуцируют  основное вещество  базальной  мембраны.

Проницаемость гистогематических барьеров изменяется под влияни­ем вегетативной нервной системы (симпатические влияния уменьшают проницаемость) и гуморальными факторами.

Помимо циркулирующих в крови гормонов, например, кортикостероидов, в изменениях прони­цаемости гистогематических барьеров основную роль играют тканевые биологически активные вещества и ферменты, образуемые как самими эндотелиальными клетками, так и клеточными элементами интерстициального пространства.

Среди этих вешеств необходимо назвать гиалуронидазу — фермент, вызывающий деполимеризацию гиалуроновой кислоты основного вещества межклеточных пространств и резко по­вышающий проницаемость барьеров, биогенные амины — серотонин (снижающий проницаемость) и гистамин (повышающий ее), гепарин — ингибирующий гиалуронидазу и уменьшающий проницаемость,  цитокиназы — активизирующие плазминоген и проницаемость барьера. Повышают проницаемость барьеров и метаболиты, вызывающие сдвиг рН,  например,   молочная кислота.

Источник: http://doctor-v.ru/med/histohematogenous-barriers/

Мое Здоровье
Добавить комментарий